E-ISSN: 2581-8868

Volume-08, Issue-06, pp-73-78

www.theajhssr.com

Crossref DOI: https://doi.org/10.56805/ajhssr

Research Paper

Open Access

Student-Led Knowledge and Institutional Sustainability: A Strategic Vision from DWPS Bhatapara

Shyam Bahadur*1, Yogesh Popat²

¹Coordinator, Delhi World Public School, Bhatapara, Chhattisgarh, India ²Principal & Teacher Physics, Delhi World Public School, Bhatapara, Chhattisgarh, India

ABSTRACT

This study explores how empowering students as knowledge creators contributes to institutional sustainability and educational excellence at Delhi World Public School, Bhatapara. Grounded in the framework of NEP 2020, the research applies quantitative analysis and hypothesis testing to assess the impact of student-led initiatives on academic performance, environmental awareness, and community engagement. The findings highlight a strong correlation between participatory learning and long-term institutional growth.

History in Education represents a pivotal transformation from a one-way flow of information to a two-way knowledge co-creation process. This paper traces the historical stages of the role of students as knowledge creators from the beginning stages in ancient times, through the medieval stage, to the contemporary period. India's National Education Policy (NEP) 2020 focuses specifically on this shift by formalizing and encouraging a system that incorporates creativity, critical thinking, and inquiry-based learning. Using surveys, and data analysis, the paper focuses on the way in which students generate knowledge and documents systemic change required to support this role. Recommendations for bridging existing gaps are designed to emphasize curricular reforms, professional development, and technological empowerment.

Traditionally, education was viewed as a one-way street where knowledge was passed from teacher to student. Now, however, education is seen to be an interactive, collaborative, and a dynamic process. Students are no longer mere passive recipients but instead active creators of knowledge, adding to the intellectual and practical productiveness of society. This paper examines this transformation spread over three historical periods—ancient, medieval, and modern—and ties it to contemporary educational practices. NEP 2020: A Paradigm Shift in Indian Education to ward Global Best Practices

NEP 2020 has shifted the Indian education landscape to fully align with global best practices. Creativity, multidisciplinary learning, and the use of digital tools allow it to position students centrally for the knowledge economy. Understanding this shift provides insights on how future educational practices can be formulated to maximize innovation and societal benefits.

KEYWORDS: Student-led knowledge creation, Institutional sustainability, Project-based education, Knowledge co-creation.

1. INTRODUCTION

- **Background**: Education is shifting from passive to active learning. DWPS Bhatapara integrates this shift to promote sustainability through student-led initiatives.
- **Purpose**: To evaluate how student involvement in knowledge creation aligns with the school's long-term sustainability vision—academic, environmental, and social.

2. LITERATURE REVIEW: HISTORICAL EVOLUTION OF STUDENTS' ROLES

2.1. Ancient Period: Foundations of Questioning and Knowledge Building

2.1.1 Socratic Method (Greece):

The Socratic method, which comes to us through the name of the classical Greek philosopher Socrates, changed education by innovating it on the medium of dialogues and dialectic questioning. Socrates helped students engage in philosophical questions against their ideas and assumptions. This kept them active and critically thinking. "The Republic," by Plato, exemplifies one dialogue coming from such dialectical discussions between student and teacher which produced profound philosophical writings.

2.1.2 Nalanda University (India):

Nalanda University, as established in ancient India was a center for intellectual discussion and collaboration. Confucian Academies of China encouraged debates between students and teachers, resulting in major developments in all areas such as medicine, mathematics, and Buddhist philosophy. The open and lively atmosphere at Nalanda allowed students to contribute actively to the body of knowledge in existence.

2.1.3 Confucian Academies (China):

In ancient China, Confucian academies strived for the application of Confucian principles to governance and social organization. The students there did not only learn but also actively involved themselves in establishing ideals of ethical administration and innovative governance practices. It created a standpoint whereby ethical considerations and practical use of knowledge became essential.

These examples from the ancient period point out that despite being tiered, education systems offered means of intellectual input and creation of knowledge.

2.2 Middle Ages: Emergence of scholarly collaboration

2.2.1 Universities (Middle Ages Europe):

During the medieval period, institutions like the University of Bologna in Europe led the way in the culture of disputations. In these academic exercises, students advanced arguments, debated each other, and furthered legal and philosophical theories of their peers in a truly co-creative environment, which promulgated academic scholarship and knowledge production.

Islamic Golden Age:

However, the Islamic Golden Age was, in fact, a time when the most remarkable intellectual and scientific achievements were made. Scholars such as Ibn Sina (Avicenna) collaborated with their students in translating, developing, and producing new knowledge from classical texts. In this regard, they made groundbreaking contributions in medicine, mathematics, and astronomy, which underscored the strength of teacher-student partnerships in the creation of knowledge.

Medieval India

In medieval India, the Gurukul system simply emphasized contextual learning whereby the students applied what they learned to solve problems in real life. For instance, their knowledge was applied in agriculture, governance, and the arts. This served as an incentive to think well and creatively, thus promoting practical solutions and innovations.

2.3. Modern Era: Techno-Innovation

The 21st century has offered unprecedented opportunities for young students to become knowledge creators because of technology, an interdisciplinary approach, and supportive policies. Some examples include:

Project-Based Learning

Finland is well known for its "inquiry-based" and "experiential" learning approach in education. Under this system, projects are used to solve real problems from the community. Through these activities, they not only acquire greater meaning of the content but also acquire skills in the solution of critical thinking and difficult problems.

2.3.1 Digital Platforms

Platforms such as Coursera, GitHub, and so forth, allow a student to co-create, share, and even perfect knowledge, such opportunities. These tools connect students and provide self-directed learning opportunities, access to collaboration with worldwide peers, and open-source contributions.

Undergraduate Research Contributions

One study by the Council on Undergraduate Research in 2019 noted that the impact of undergraduate research. The students' projects can lead to major academic publications or community solutions with 74% chances. This has shown that the potential of students to critically contribute towards the practical and academic body of knowledge is quite high.

3. THE ROLE OF NEP 2020 IN KNOWLEDGE CREATION

India's National Education Policy (NEP) 2020 aligns education with the demands of a knowledge economy. The policy emphasizes the following key areas to support students as creators of knowledge:

3.1. Holistic and Multidisciplinary Education:

NEP 2020 promotes inter and multidisciplinary exploration, thus invigorating creativity and innovation among students. The policy integrates subjects such as science, arts, and humanities in a bid to develop individuals who can think critically and creatively in all fields.

3.2. Experiential Learning:

The policy introduces inquiry-driven, project-based methodologies, echoing ancient and medieval practices of participatory learning. Experiential learning opportunities, such as internships, field trips, and community projects, allow students to apply their knowledge in real-world contexts and contribute to society.

3.3. Use of Technology:

NEP 2020, therefore, emphasizes digital literacy and virtual labs and collaborative platforms. Through equitable access to these tools, this policy seeks to democratize the creation of knowledge and reduce the divide caused by digital disparities.

3.4. Research Incorporation:

NEP 2020 forms the National Research Foundation, which motivates undergraduate and graduate students to do research. The NRF gives a sponsorship and facilitate for the research work, so the results are utilized by students in improving academic and practical knowledge.

3.5 Curriculum Flexibility:

Choice-based systems allow a student to align education with their interests and goals. Through flexible pathways and personalized learning plans, NEP 2020 promotes innovative thinking and empowerment among students to pursue their passions.

4. OBJECTIVES

- 1. To examine the role of student-led initiatives in enhancing educational quality.
- 2. To measure the relationship between knowledge creation and institutional sustainability.
- 3. To test hypotheses about the effectiveness of project-based learning on performance and engagement.

5. RESEARCH QUESTIONS

- 1. Does student-led knowledge creation improve academic outcomes?
- 2. Is there a measurable impact on environmental awareness and sustainability projects?
- 3. How does student engagement affect institutional branding and community trust?

6. HYPOTHESES

- **H**₀ (**Null Hypothesis**): Student-led knowledge creation has no significant impact on institutional sustainability.
- **H₁ (Alternative Hypothesis)**: Student-led knowledge creation significantly contributes to institutional sustainability across academic, environmental, and social domains.

7. METHODOLOGY

- **Design**: Mixed methods (quantitative surveys, qualitative interviews).
- **Sample**: 200 students, 30 teachers, 100 parents.
- Instruments: Structured questionnaire with Likert-scale items; interview guide for qualitative data.

8. DATA ANALYSIS AND RESULTS

A. Descriptive Statistics (Sample: 200 students)

Table 1: Descriptive Statistics

Indicator	Mean	SD
Academic performance (GPA scale)	3.52	0.46
Sustainability engagement score	4.21	0.57
Research project involvement rate	68% —	

B. Correlation Matrix

Table 2: Correlation Matrix

Variables	Academic Perf.	Sust. Engage.	Branding Impact
Academic Performance	1	0.62	0.55
Sustainability Engagement	0.62	1	0.71
Institutional Branding Impact	0.55	0.71	1

C. Hypothesis Testing (Independent t-test)

- **Group A**: Students involved in projects (n = 100)
- **Group B**: Students not involved (n = 100)

Table 3: Testing Result

Variable	Group A Mean	Group B Mean	t-value	p-value
Academic Performance	3.73	3.31	5.89	0.000
Sustainability Awareness	4.45	3.97	6.12	0.000

Result: Since p < 0.05, we reject H_0 . Student-led knowledge creation significantly impacts academic and sustainability outcomes.

8. DISCUSSION

- Students involved in projects and research initiatives show significantly higher academic and sustainability engagement scores.
- NEP 2020-aligned practices like inquiry-based learning and digital integration support institutional sustainability.
- Strong parental support (based on interviews) correlates with increased school reputation and admissions.

9. IMPLICATIONS

- **For Schools**: Promote project-based learning and provide platforms for student research.
- For Policy: Support flexible curricula that align education with sustainable development goals.
- **For Community**: Strengthen partnerships to expand the impact of student-led innovations.

10. CHALLENGES AND FUTURE DIRECTIONS

10.1 Resource Inequity:

Unequal access to digital tools and resources creates another barrier to the advancement of knowledge creation. Underprivileged area students do not have access to the internet, computers, or other necessary technology, which reflects their inability to perform knowledge creation.

10.2 Rigid Assessment Systems:

Such evaluation models do not encourage creativity nor critical thinking. Standardized test scores and marks will not reflect the real potential of a child to create something new.

10.3 Teacher Preparedness:

Many teachers might lack the training or experience to facilitate project-based and inquiry-driven learning. There is a great need for professional development programs that equip teachers with the skills to guide students in creating knowledge.

11. FUTURE DIRECTIONS

11.1Curricular Reforms

Curricula should thus be redesigned to offer greater opportunity for interdisciplinary and project-based learning that should seek to facilitate more active real-world problem solving and creative projects.

Traditional rote learning should yield to a more holistic and integrated approach for learning.

11.2 Technology

Providing affordable access to digital tools and virtual labs is crucial for democratizing knowledge creation. Schools and governments should invest in infrastructure that supports digital literacy and equitable access to technology.

11.3 Teacher Development Programs

Professional development programs should be designed to prepare educators in student-centered teaching methodologies. Training programs should, therefore, focus on project-based learning, inquiry-driven education, and technology for the development of better learning experiences.

11.4 Reward Mechanisms

There is a need for the development of recognition systems that reward students' contributions to knowledge. Examples include the recognition of innovative projects, platforms for publishing student research, and scholarship awards for exceptional contributions in the development of knowledge.

12. CONCLUSION

The study affirms that student-led knowledge creation is a vital component of institutional sustainability. DWPS Bhatapara's approach illustrates how aligning education with innovation, environmental responsibility, and active engagement can build a future-ready institution.

Going from Socratic dialogues to NEP 2020, emphasizing critical thinking and research, the development of students as knowledge creators proves education is dynamic as it keeps changing. Overcome with challenges, embrace the latest technological advances, and align policies to participatory learning to build systems that empower students to innovate, collaborate, and shape the future.

Now, to regard students not as consumers of knowledge but rather as the active creators of it is not only a theoretical necessity but an aspect of practical need, for in solving intricate complex problems posed by a global problematic, critical thinking and creativity in problem-solving and constructive cooperation would be needed.

The skills are best fostered and nurtured by the collaboration of educational institutions, policymakers, educators, and students. If we do this, we can establish a future for the new generation in which it can take meaningful contributions toward the benefit and development of society and spur innovation forward.

REFERENCES

- 1. Integrating Sustainability into STEM Curricula, IEEE Potentials Magazine, September 2024
- 2. Experiential Learning in K-12 Schools Through Social Innovation Projects [STEM Education],
- 3. IEEE Potentials Magazine, July 2024
- 4. Measuring the Impact of Student Knowledge Exchange for Sustainability: A Systematic Literature Review and Framework, *Cleaner Production Letters*, Volume 6, June 2024, 100056.
- 5. Council on Undergraduate Research. (2019). The Impact of Undergraduate Research on Knowledge
- 6. Exploring Sustainable Development Perceptions Among Higher Education Students: An Empirical Study on Knowledge, Attitudes, and Behaviours, *Cleaner and Responsible Consumption*, Volume 14, September 2024, 100223.
- 7. UNESCO. (2021). Futures of Education: Learning to Become.
- 8. Scardamalia, M., & Bereiter, C.(2022). Knowledge structure and Knowledge Creation. In R. Keith Sawyer (Ed.), The Cambridge Handbook of the Learning lores (pp. 385-405). Cambridge University

- Press.
- 9. Lee, A. V. Y., Tan, S. C., & Teo, C. L. (2023). Designs and practices using generative AI for sustainable pupil converse and knowledge creation. Smart Learning surroundings , 10, 59. https://doi.org/10.1186/s40561-023-00279-1.
- 10. Sustainability in Education Through Collaborative Learning Using Social Media: An Exploratory Study with Moderating Role of "Knowledge Creator" and "Knowledge Seeker"
- 11. International Journal of Sustainability in Higher Education, Ahead-of-print (2023)
- 12. Bereiter, C.(2002). Education and mind in the knowledge age. Lawrence Erlbaum Associates.
- 13. Bereiter, C.(2014). Principled practical knowledge Not a ground but a graduation. Journal of the Learning lores , 23(1), 4- 17. https://doi.org/10.1080/10508406.2013.865228
- 14. Holmes, W.(2019). The places of knowledge in knowledge creation. International Society of the Learning lores. https://repository.isls.org/bitstream/1/4503/1/767-774.pdf
- 15. Vinuesa, R., Aziz, A., & Lee, J.(2020). Knowledge structure in education A review of the literature. Educational Research Review, 30, 100312. https://doi.org/10.1016/j.edurev.2019.11.001